投稿指南
一、稿件要求: 1、稿件内容应该是与某一计算机类具体产品紧密相关的新闻评论、购买体验、性能详析等文章。要求稿件论点中立,论述详实,能够对读者的购买起到指导作用。文章体裁不限,字数不限。 2、稿件建议采用纯文本格式(*.txt)。如果是文本文件,请注明插图位置。插图应清晰可辨,可保存为*.jpg、*.gif格式。如使用word等编辑的文本,建议不要将图片直接嵌在word文件中,而将插图另存,并注明插图位置。 3、如果用电子邮件投稿,最好压缩后发送。 4、请使用中文的标点符号。例如句号为。而不是.。 5、来稿请注明作者署名(真实姓名、笔名)、详细地址、邮编、联系电话、E-mail地址等,以便联系。 6、我们保留对稿件的增删权。 7、我们对有一稿多投、剽窃或抄袭行为者,将保留追究由此引起的法律、经济责任的权利。 二、投稿方式: 1、 请使用电子邮件方式投递稿件。 2、 编译的稿件,请注明出处并附带原文。 3、 请按稿件内容投递到相关编辑信箱 三、稿件著作权: 1、 投稿人保证其向我方所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我方所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我方所投之作品不得同时向第三方投送,即不允许一稿多投。若投稿人有违反该款约定的行为,则我方有权不向投稿人支付报酬。但我方在收到投稿人所投作品10日内未作出采用通知的除外。 5、 投稿人授予我方享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 投稿人委托我方声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

不同热模拟实验煤热解产物特征及动力学分析(8)

来源:冶金管理 【在线投稿】 栏目:期刊导读 时间:2020-08-25
作者:网站采编
关键词:
摘要:从两个开放体系实验及分析结果来看(图5和图6),采用的升温速率相同,获得的结果差别很大。尽管 TG-M S获得的是甲烷转化率,Rock-Eval获得的是气态烃(C1-5)转化

从两个开放体系实验及分析结果来看(图5和图6),采用的升温速率相同,获得的结果差别很大。尽管 TG-M S获得的是甲烷转化率,Rock-Eval获得的是气态烃(C1-5)转化率,一般来说,生成总烃气相对生成甲烷要容易一些,但是差别不应该太大。尤其是Rock-Eval实验及分析结果中生烃转化率达到50%时,对应的Ro约为0.6%,而在Ro为1.0%附近生烃就结束,这明显不符合地质情况。造成这一现象的原因除了煤在10℃/min升温速率下,600℃时生烃尚未结束外,还可能与Rock-Eval实验数据的前处理有关。相比较而言,TG-MS实验分析结果与地质情况较为接近。

图5 煤TG-MS高温热模拟实验中甲烷瞬时产率与 Ro关系(升温速率为10℃/min)Fig.5 Relation between CH4 yields of the coal sample from TG-MSexperiment and Ro

图6 煤 Rock-Eval热模拟实验中烃转化率与 Ro关系Fig.6 Relation between hydrocarbon gases yields of the coal sample from Rock-Eval experiment and Ro

图7 煤金管热模拟实验中总烃气产率与Ro关系(密闭体系)Fig.7 Relation between hydrocarbon gases yields of the coal sample from gold tube experiment and Ro

从金管密闭体系实验结果及分析来看(图7),Ro达到4.5%时,煤仍具有较强的生气能力,而开放体系(TG-M S)中甲烷产率在Ro约为 3.2%时就达到90%,如果以850℃作为 TG-M S实验中煤生甲烷结束温度,则对应的Ro约为5.3%。金管实验中高演化阶段煤样仍具有较强的生气能力(甲烷),是与煤样在低温阶段生成的正构烷烃产物通过环化和芳香化作用与干酪根/热解沥青再次结合生成新的稳定性较高的干酪根有关。由于金管实验的煤样生气能力并未枯竭,其生气极限值无法得知,所以用实验得到的最大值来代替极限值,所得生气转化率相对高于真实的生气转化率。前人对煤样在密闭体系中,以1℃/h的升温速率进行加热,在终温600℃时生甲烷能力并未枯竭,一直呈现增长的趋势[21]。关于密闭体系下煤生甲烷的极限产率到底为多少?不同产气极限对动力学模型参数及其地质外推结果有何影响,笔者将有另文报道。

3 不同实验体系下产物动力学特征

虽然目前业已报道的描述有机质成烃的化学动力学模型有总包反应[22-23]、串联反应[24]、平行反应[25-26]、连串反应[27]等多种反应速率模型,并且每一种模型又可分为若干亚型。但大量研究证明,有机质成气是一个非常复杂的动力学过程,而且该过程可以用平行一级反应进行描述。笔者选择具有广泛代表性的平行一级反应速率模型来描述有机质生油、生气过程。建立的干酪根成气化学动力学模型为

式中:NG为平行一级反应数;EGi,AGi,XGi0(i=1,2,…,NG)分别为每个反应的活化能(kJ/mol)、指前因子(s-1)和对应每一反应的干酪根成气的原始潜量/反应分数;R为气体常数[8.314 47 kJ/(mol·K)];T为绝对温度,K;T0为初始温度,K;D为升温速率,K/s;XGi为第i个反应的生气量;XG为所有NG个平行反应的总生气量,具体的标定方法见文献[28]。

图8为煤生气(甲烷)活化能分布图,其中 Rock-Eval实验对应的是煤生总气(C1-5),TG-M S与金管实验对应的是煤生甲烷。可以看出,金管实验中(密闭体系)煤样生甲烷的活化能(平均活化能为243.47 kJ/mol,指前因子为7.67×1013min-1)明显高于 TG-M S(开放体系)实验煤样生甲烷的活化能(平均活化能为 220.12 kJ/mol,指前因子为 1.11×1014min-1),两者都高于Rock-Eval实验结果(平均活化能为198.33 kJ/mol,指前因子为8.59×1014min-1)。金管(密闭体系)实验中甲烷来源除了有机质的直接裂解,还有液态烃(有机质初次裂解而成)的裂解贡献,而TG-M S(开放体系)实验中甲烷的来源只有有机质的直接裂解。因此,金管实验中煤样生甲烷活化能高于TG-M S实验中煤样生甲烷的活化能。开放体系下,煤生重烃气(C2-5)的活化能要低于生甲烷的活化能,故煤生总烃气活化能要低于生甲烷活化能,但是两者平均活化能差约为22 kJ/mol,而煤生气组分中以甲烷为主,两者的活化能差别不应太大。这主要是由于Rock-Eval实验中煤生气能力尚未结束,人为将生气转化率提高(导致生烃容易,进而活化能偏低)所致。

图8 不同实验体系下获得的煤样成气活化能分布Fig.8 Distributions of activation energy of gas generation from coal under different heating apparatus

图9 不同热模拟实验体系得到的动力学参数计算成气史Fig.9 Gas transformation ratio vs.time for different heating apparatus conditions

图9给出了不同生烃装置下热裂解煤获得的生气动力学参数在徐家围子地区的应用结果,其中徐家围子地区的埋藏史—热史见文献[29]。由Rock-Eval实验得到的生气动力学参数外推表明,煤样生气开始较早,约在距今115M a,转化率最终可达100%;而TG-M S实验得到的生甲烷动力学参数外推表明,煤样生甲烷大约开始于距今110M a,最大转化率可达88%,Ro约为2.6%(实验也表明煤样Ro达到5.3%之前生甲烷尚未结束);金管实验获得的生甲烷动力学参数外推表明,煤样生甲烷大约在距今80Ma开始,最大转化率达60%。明显看出,不同生烃装置下获得的动力学参数外推结果差别很大。

文章来源:《冶金管理》 网址: http://www.yjglzz.cn/qikandaodu/2020/0825/411.html



上一篇:一种准确测定土壤空气汞浓度的采样方法研究<
下一篇:关于冶金化学分析用标准物质均匀性保证分析

冶金管理投稿 | 冶金管理编辑部| 冶金管理版面费 | 冶金管理论文发表 | 冶金管理最新目录
Copyright © 2018 《冶金管理》杂志社 版权所有
投稿电话: 投稿邮箱: